Publication Images

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 

Notched Izod impact strength of PP/MWNT nanocomposites prepared from PP/f-MWNT master batch.

S. Ghoshal, P. -H. Wang, P. Gulgunje,  N. Verghese, S. Kumar, “High impact strength polypropylene containing carbon nanotubes”, Polymer (2016). 100,   259-274.

 

 

 

Fig. 1. 

Schematic illustration of MWNT functionalization, master batch and nanocomposite preparation. (a) p-MWNT was treated with 10 M HNO3 at 120 °C for 24 h (b) f-MWNT was sonicated in butanol for 48 h after which MA-g-PP/xylene or PP/xylene solution was added drop-by-drop into the f-MWNT/butanol dispersion at 60 °C followed by drying. (c) f-MWNT master batch was physically mixed with PP. The mixture was then micro-compounded and injection molded.

Fig. 3. 

TEM images of (a,b) PP/f-MWNT and (c,d) MA-g-PP/f-MWNT master batches. Both PP and MA-g-PP form continuous coating on f-MWNTs, suggesting interaction between nanotubes and the polymers. There appears to be no gap between polymer and f-MWNTs. Images (a) and (c) as well as the arrow in (b) demonstrates the ability of polymer coating on separating vicinity MWNTs.

P. -H. Wang, S. Ghoshal, P. Gulgunje,  N. Verghese, S. Kumar,  “Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes”. Polymer (2016), 100, 244-258

 

 

Tensile strength versus tensile modulus of various PAN based carbon fibers. ...

Figure 1. Tensile strength versus tensile modulus of various PAN based carbon fibers. Circles represent the tensile properties of commercial PAN based carbon fibers. Stars represent the tensile strength and modulus of the GT PAN based carbon fibers produced under DARPA ASF program. Trend lines and   represent trajectory of the developments in the high strength and high modulus solution spun PAN based carbon fibers, respectively over the last 30 years. Trend line represents the development trajectory in gel spun PAN based carbon fiber under DARPA ASF program

H. G. Chae, B. A. Newcomb, P. V. Gulgunje, Y. Liu, K. Gupta, M. G. Kamath, K. M. Lyons, S. Ghoshal, C. Pramanik, L. A. Giannuzzi, K. Sahin, I. Chasiotis, S. Kumar, “High strength and high modulus carbon fibers”, Carbon, 93, 81-87 (2015). http://dx.doi.org/10.1016/j.carbon.2015.05.016.

 

B. A. Newcomb, L. A. Giannuzzi, K. M. Lyons, P. V. Gulgunje, K. Gupta, Y. Liu, M. G. Kamath, K. McDonald, J. Moon, B. Feng, G. P. Peterson, H. G. Chae, S. Kumar, “High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities”, Carbon, 93, 502-514 (2015). http://dx.doi.org/10.1016/j.carbon.2015.05.037.

 

 

 

b) SEM micrograph of hollow carbon fiber with honecycomb cross-section, d) Raman G band intensity variation across the fiber cross section.

P. V. Gulgunje, B. A. Newcomb, K. Gupta, H. G. Chae, T. Tsotsis, S. Kumar, “Low density  and high-modulus carbon fibers from polyacrylonitrile with honeycomb structure”, Carbon,95, 710-714 (2015). DOI: 10.1016/j.carbon.2015.08.097.

 

P. V. Gulgunje, B. A. Newcomb, K. Gupta, H. G. Chae, T. Tsotsis, S. Kumar, “Low density  and high-modulus carbon fibers from polyacrylonitrile with honeycomb structure”, Carbon,95, 710-714 (2015). DOI: 10.1016/j.carbon.2015.08.097.

 

 

B. A. Newcomb, L. A. Giannuzzi, K. M. Lyons, P. V. Gulgunje, K. Gupta, Y. Liu, M. G. Kamath, K. McDonald, J. Moon, B. Feng, G. P. Peterson, H. G. Chae, S. Kumar, “High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities”, Carbon, 93, 502-514 (2015). http://dx.doi.org/10.1016/j.carbon.2015.05.037.

 

 

 

K. Sahin, N. A. Fasanella, I. Chasiotis, K. M. Lyons, B. A. Newcomb, M. G. Kamath, H. G. Chae, S. Kumar, “High Strength Micron Size Carbon Fibers from PAN-CNT Precursors”, Carbon, 77, p. 442 – 453 (2014). DOI: 10.1016/j.carbon.2014.05.049.

 

 

H. Clive Liu, A. T. Chien, B. A. Newcomb,  Y. Liu, S. Kumar, “Processing, structure and properties of lignin and CNT incorporated PAN based carbon fibers”,  ACS Sustainable Chemistry and Engineering, (2015). http://dx.doi.org/10.1021/acssuschemeng.5b00562.

 

A. A. B. Davijani and S. Kumar, “Ordered wrapping of poly (methyl methacrylate) on single wall carbon nanotubes, Polymer,70, 278-281 (2015). http://dx.doi.org/10.1016/j.polymer.2015.06.018.

 

Abstract Image

Tensile modulus of PAN and PAN/CNC composite fibers.

H. Chang, A. T. Chien, H. C. Liu, P. H. Wang, B. A. Newcomb, and S. Kumar, “Gel Spinning of Polyacrylonitrile/Cellulose Nanocrystal Composite Fibers”, ACS Biomaterials Science and Engineering, (2015).  http://dx.doi.org/10.1021/acsbiomaterials.5b00161.   

 

A. T. Chien, H. C. Liu, B. A. Newcomb, C. Xiang, J. M. Tour, S. Kumar, “PAN fibers containing graphene oxide nanoribbons”, ACS Applied Materials and Interfaces, 7, 5281 - 5288 (2015). DOI:10.1021/am508594p.

 

A. T. Chien, S. Cho, Y. Joshi, S. Kumar, “Electrical Conductivity and Joule Heating of Polyacrylonitrile/Carbon Nanotube Composite Fibers”, Polymer, 55, p. 6896 – 6905 (2014). DOI: 10.1016/j.polymer.2014.10.064.

 

 

http://kumar.mse.gatech.edu/sites/default/files/image003.png

Typical bi-component fiber cross-sections: (a) sheath-core, (b) side-by-side, (c) layer-by-layer, (d) islands-in-the-sea, and (e) segmented pie.

T. Hongu, G. O. Phillips and M. Takigami, New Millennium Fibers. (Cambridge, Woodhead, Boca Raton, 2005)
L. H. Sperlin, In Recent Advances in Polymer Blends, Graft, and Blocks. (Plenum Press, New York, 1974)
 

http://kumar.mse.gatech.edu/sites/default/files/image004.png

Optical image of PAN sheath – PAN/MWNT core bi-component fibers

http://kumar.mse.gatech.edu/sites/default/files/image005.png

Optical image of PAN/MWNT sheath and PAN core bi-component fibers
An-Ting Chien, Prabhakar V. Gulgunje, Han Gi Chae, Aniruddha Joshi, Jaeyun Moon,
Bo Feng, G. P. Peterson, and Satish Kumar, “Functional Polyacrylonitrile-Polyacrylonitrile/Carbon Nanotube Bi-component Fibers”, SAMPE Technical Conference Proceedings, Charleston SC, October 22-25, 2012.
 

 

http://kumar.mse.gatech.edu/sites/default/files/image006.jpg

Temperature-dependent thermal conductivity of PEK/CNT fibers with diverse CNT loadings
Moon, J.; Weaver, K.; Feng, B.; Chae, H. G.; Kumar, S.; Baek, J.-B.; Peterson, G. P., Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. Review of Scientific Instruments 2012, 83 (1).

 

http://kumar.mse.gatech.edu/sites/default/files/image007.jpg

Basu-Dutt, S.; Minus, M. L.; Jain, R.; Nepal, D.; Kumar, S., Chemistry of Carbon Nanotubes for Everyone. Journal of Chemical Education 2012, 89 (2), 221-229

 

http://kumar.mse.gatech.edu/sites/default/files/image008.jpg

Molecular schematic of (b), possible [1000]/[010] epitaxial matching between PVA chain and graphite sheet, and arrangement of PVA chains with this epitaxial matching on (c) armchair SWNT, (d) zig-zag SWNT, and (e) chiral SWNT.
Minus, M. L.; Chae, H. G.; Kumar, S., Observations on Solution Crystallization of Poly(vinyl alcohol) in the Presence of Single-Wall Carbon Nanotubes. Macromolecular Rapid Communications 2010, 31 (3), 310-316
 

 

http://kumar.mse.gatech.edu/sites/default/files/image009.jpg

SEM images of nanocomposite fibers by solution crystallization.  HDPE composites with (a) 2 and (b) 12 hours of crystallization, UHMWPE composites with (c) 2 and (d) 12 hours of crystallization.
Zhang, S.; Lin, W.; Wong, C.-P.; Bucknall, D. G.; Kumar, S., Nanocomposites of Carbon Nanotube Fibers Prepared by Polymer Crystallization. Acs Applied Materials & Interfaces 2010, 2 (6), 1642-1647
 

http://kumar.mse.gatech.edu/sites/default/files/image010.jpg

Change in specific capacitance for PAN/CNT films with different compositions measured at 5 mV s-1 scan rate cyclic voltammetry in 6 M KOH for 10,000 cycles.
Jagannathan, S.; Liu, T.; Kumar, S., Pore size control and electrochemical capacitor behavior of chemically activated polyacrylonitrile - Carbon nanotube composite films. Composites Science and Technology 2010, 70 (4), 593-598
 
 
 

http://kumar.mse.gatech.edu/sites/default/files/image011.jpg

Scanning electron micrographs of SWNT/polyethylene shish-kebab structure at (a) low and (b) high magnifications.
Minus, M. L.; Chae, H. G.; Kumar, S., Polyethylene Crystallization Nucleated by Carbon Nanotubes under Shear. Acs Applied Materials & Interfaces 2012, 4 (1), 326-330
 

http://kumar.mse.gatech.edu/sites/default/files/image012.jpg

Storage modulus and tan δ behavior of PMMA, SWNT-A/PMMA (10/90), and SWNT-A (15/85) composite films as a function of temperature
Liu, J.; Rasheed, A.; Minus, M. L.; Kumar, S., Processing and Properties of Carbon Nanotube/Poly(methyl methacrylate) Composite Films. Journal of Applied Polymer Science 2009, 112 (1), 142-156
 

http://kumar.mse.gatech.edu/sites/default/files/image013.png

Electrical conductivity of SWNT-B/PMMA composites
Liu, J.; Rasheed, A.; Minus, M. L.; Kumar, S., Processing and Properties of Carbon Nanotube/Poly(methyl methacrylate) Composite Films. Journal of Applied Polymer Science 2009, 112 (1), 142-156
 
 

http://kumar.mse.gatech.edu/sites/default/files/image014.jpg

Kim, Y.-t.; Haftel, V. K.; Kumar, S.; Bellamkonda, R. V., The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 2008, 29 (21), 3117-3127
 
 

http://kumar.mse.gatech.edu/sites/default/files/image015.jpg

Solubility of acid treated SWNTs in xylene/butanol mixture.  Top and bottom rows indicate amount of xylene and butanol in milliliters, respectively.  Acid treated SWNTs (1 mg) were dispersed in 8 mL xylene and sonicated for 30 min and the dispersion was allowed to settle for 2 h before taking a photograph.  Subsequently, each time 1.6 mL butanol was added followed by sonication (30 min) and settling (2 h).
Lee, G. W.; Jagannathan, S.; Chae, H. G.; Minus, M. L.; Kumar, S., Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer 2008, 49 (7), 1831-1840
 

 

http://kumar.mse.gatech.edu/sites/default/files/image016.jpg

Shrinkage behavior of polypropylene (PP) and PP/CNT fibers at 3.2 MPa stress.
Lee, G. W.; Jagannathan, S.; Chae, H. G.; Minus, M. L.; Kumar, S., Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer 2008, 49 (7), 1831-1840
 

http://kumar.mse.gatech.edu/sites/default/files/image017.jpg

Scanning electron micrograph of vapor grown carbon nanofiber (VGCNF) powder
Guo, H.; Rasheed, A.; Minus, M. L.; Kumar, S., Polyacrylonitrile/vapor grown carbon nanofiber composite films. Journal of Materials Science 2008, 43 (13), 4363-4369
 

 

http://kumar.mse.gatech.edu/sites/default/files/image018.jpg

PMMA cups electrospun from nitromethane solution
Liu, J.; Rasheed, A.; Dong, H.; Carr, W. W.; Dadmun, M. D.; Kumar, S., Electrospun Micro- and Nanostructured Polymer Particles. Macromolecular Chemistry and Physics 2008, 209 (23), 2390-2398
 

http://kumar.mse.gatech.edu/sites/default/files/image019.jpg

Chae, H. G.; Kumar, S., Materials science - Making strong fibers. Science 2008, 319 (5865), 908-909

http://kumar.mse.gatech.edu/sites/default/files/image020.jpg

Optical micrographs of transcrystalline interphases for polypropylene surrounding the CNTs fibers isothermally crystallized at 125 ºC: (a) a single CNT fiber and (b) two CNT fibers.
Zhang, S.; Minus, M. L.; Zhu, L.; Wong, C.-P.; Kumar, S., Polymer transcrystallinity induced by carbon nanotubes. Polymer 2008, 49 (5), 1356-1364
 

http://kumar.mse.gatech.edu/sites/default/files/image021.png

Scanning electron micrographs of twisted fibers with densification: (a) single fiber; (b) nanotube arrangement in the fiber; (c) nanotube fiber knot, and (d) double twisted fiber.  Arrow shows the direction of the fiber axis.
Zhang, S.; Zhu, L.; Minus, M. L.; Chae, H. G.; Jagannathan, S.; Wong, C.-P.; Kowalik, J.; Roberson, L. B.; Kumar, S., Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. Journal of Materials Science 2008, 43 (13), 4356-4362
 

http://kumar.mse.gatech.edu/sites/default/files/image022.png

Porous fibers from solution of iPMMA in methylene chloride at different magnifications
Dayal, P.; Liu, J.; Kumar, S.; Kyu, T., Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 2007, 40 (21), 7689-7694
 

http://kumar.mse.gatech.edu/sites/default/files/image023.jpg

Porous fibers from aPMMA/MC. 
Dayal, P.; Liu, J.; Kumar, S.; Kyu, T., Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 2007, 40 (21), 7689-7694
 

http://kumar.mse.gatech.edu/sites/default/files/image024.jpg

(a)  Porous fibers from PS/THF. (b) Magnification of the fiber surface features in a.
Dayal, P.; Liu, J.; Kumar, S.; Kyu, T., Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 2007, 40 (21), 7689-7694
 
 

http://kumar.mse.gatech.edu/sites/default/files/image025.jpg

SEM micrographs of (a) stabilized PAN and (b) stabilized PAN/SWNT (99/1), (c) carbonized PAN and (d) carbonized PAN/SWNT (99/1) fibers.
Chae, H. G.; Minus, M. L.; Rasheed, A.; Kumar, S., Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer 2007, 48 (13), 3781-3789
 

http://kumar.mse.gatech.edu/sites/default/files/image026.jpg

Transmission electron micrographs of the single-layer carbon nano fibers
Uchida, T.; Anderson, D. P.; Minus, M. L.; Kumar, S., Morphology and modulus of vapor grown carbon nano fibers. Journal of Materials Science 2006, 41 (18), 5851-5856
 

http://kumar.mse.gatech.edu/sites/default/files/image027.jpg

Current-voltage plots of SWNTs and pyrrole treated arylsulfonic acid-functionalized SWNTs at a scan rate of 10 mV/s
Zhou, C. F.; Kumar, S.; Doyle, C. D.; Tour, J. M., Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chemistry of Materials 2005, 17 (8), 1997-2002
 
 

http://kumar.mse.gatech.edu/sites/default/files/image028.png

(a)  High-resolution transmission electron micrograph of the electrospun PAN/SWNT composite fiber and (b, c, and d) scanning electron micrographs of electrospun SWNT/PMMA fibers
Liu, J.; Wang, T.; Uchida, T.; Kumar, S., Carbon nanotube core-polymer shell nanofibers. Journal of Applied Polymer Science 2005, 96 (5), 1992-1995
 

http://kumar.mse.gatech.edu/sites/default/files/image029.jpg

Electroprocessed  PMMA cup
Liu, J.; Kumar, S., Microscopic polymer cups by electrospinning. Polymer 2005, 46 (10), 3211-3214
 
 

http://kumar.mse.gatech.edu/sites/default/files/image030.png

Storage modulus and tan δ behavior of PAN and PAN/SWNT film as a function of temperature
Guo, H.; Sreekumar, T. V.; Liu, T.; Minus, M.; Kumar, S., Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 2005, 46 (9), 3001-3005
 

http://kumar.mse.gatech.edu/sites/default/files/image031.jpg

Thermal expansion of PAN and PAN/SWNT (60/40) films as a function of temperature
Guo, H.; Sreekumar, T. V.; Liu, T.; Minus, M.; Kumar, S., Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 2005, 46 (9), 3001-3005
 
 

http://kumar.mse.gatech.edu/sites/default/files/image032.jpg

Scanning electron micrographs of (a) SWNT powder and (b) PAN/SWNT (60/40) film
Guo, H.; Sreekumar, T. V.; Liu, T.; Minus, M.; Kumar, S., Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 2005, 46 (9), 3001-3005
 

http://kumar.mse.gatech.edu/sites/default/files/image033.jpg

Transmission electron micrograph of carbon nanofibers
Uchida, T.; Dang, T.; Min, B. G.; Zhang, X. F.; Kumar, S., Processing, structure, and properties of carbon nano fiber filled PBZT composite fiber. Composites Part B-Engineering 2005, 36 (3), 183-187
 

http://kumar.mse.gatech.edu/sites/default/files/image034.jpg

Dynamic mechanical properties of poly(ethylene terephthalate) (PET) and PET/POSS composite fibers. (a) Storage modulus and (b) tan δ behavior as a function of temperature
Zeng, J.; Kumar, S.; Iyer, S.; Schiraldi, D. A.; Gonzalez, R. I., Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Performance Polymers 2005, 17 (3), 403-424
 

http://kumar.mse.gatech.edu/sites/default/files/image035.jpg

G’ band shift in the PMMA/SWNT composites as a function of Δδp
Liu, J.; Liu, T.; Kumar, S., Effect of solvent solubility parameter on SWNT dispersion in PMMA. Polymer 2005, 46 (10), 3419-3424
 

http://kumar.mse.gatech.edu/sites/default/files/image036.png

Radial breathing mode (RBM) bands of SWNT powder and PMMA/SWNT composite films made from toluene and nitromethane.  Dotted lines show Lorentzian peak fitting to the SWNT powder spectra
Liu, J.; Liu, T.; Kumar, S., Effect of solvent solubility parameter on SWNT dispersion in PMMA. Polymer 2005, 46 (10), 3419-3424
 

http://kumar.mse.gatech.edu/sites/default/files/image037.png

Transmission electron micrographs of (b) and (c) individual SWNTs in the PAN/SWNT (95/5) composites.
Uchida, T.; Kumar, S., Single wall carbon nanotube dispersion and exfoliation in polymers. Journal of Applied Polymer Science 2005, 98 (3), 985-989
 
 

http://kumar.mse.gatech.edu/sites/default/files/image038.jpg

WAXD meridional scans of poly(ethylene terephthalate-co-4,4’-bibenzoate)
Ma, H. M.; Uchida, T.; Collard, D. M.; Schiraldi, D. A.; Kumar, S., Crystal structure and composition of poly(ethylene terephthalate-co-4,4 '-bibenzoate). Macromolecules 2004, 37 (20), 7643-7648
 

http://kumar.mse.gatech.edu/sites/default/files/image039.jpg

FTIR spectra of 6 M HNO3 treated SWNT with and without KOH wash

http://kumar.mse.gatech.edu/sites/default/files/image040.jpg

d spacing of SWNT diffraction peaks in films processed from nitric acid and heat treated at 900 ºC.  Diffraction plane (a) (1,0) and (b) (1,1)

Zhang, X. F.; Sreekumar, T.V.; Liu, T.; Kumar, S., Properties and structure of nitric acid oxidized single wall carbon nanotube films. Journal of Physical Chemistry B 2004, 108 (42), 16435-16440

http://kumar.mse.gatech.edu/sites/default/files/image041.jpg

(a)  Tan δ and (b) storage modulus as a function of temperature for PAN and PAN/SWNT composite fibers (Note: In figure 1b (storage modulus vs temperature), the storage plots have been labeled incorrectly.  The plot marked as PAN/SWNT (90/10) should read PAN/SWNT (95/5), and the plot marked PAN/SWNT (95/5) should read PAN/SWNT (90/10).)
Sreekumar, T. V.; Liu, T.; Min, B. G.; Guo, H.; Kumar, S.; Hauge, R. H.; Smalley, R. E., Polyacrylonitrile single-walled carbon nanotube composite fibers. Advanced Materials 2004, 16 (1), 58-61
 

http://kumar.mse.gatech.edu/sites/default/files/image042.jpg

Polarized infrared spectra of PAN and PAN/SWNT (99/1) composite fibers.
Sreekumar, T. V.; Liu, T.; Min, B. G.; Guo, H.; Kumar, S.; Hauge, R. H.; Smalley, R. E., Polyacrylonitrile single-walled carbon nanotube composite fibers. Advanced Materials 2004, 16 (1), 58-61
 

http://kumar.mse.gatech.edu/sites/default/files/image043.jpg

The half-time of crystallization, t1/2, of the PET/PETBB55 (70/30) blend as a function of isothermal crystallization temperature
Min, B.; Kumar, S.; Hibbs, M. R.; Ma, H. M.; Collard, D. M.; Schiraldi, D. A., Sequence analysis and fiber properties of a blend of poly(ethylene terephthalate) and poly(ethylene terephthalate-co-4,4 '-bibenzoate). Journal of Applied Polymer Science 2004, 93 (4), 1793-1803
 

http://kumar.mse.gatech.edu/sites/default/files/image044.jpg

Scanning electron micrographs of (a) as-produced HiPCO SWNT powder, and (b) as-produced SWNT/PAN composite films
Liu, T.; Sreekumar, T. V.; Kumar, S.; Hauge, R. H.; Smalley, R. E., SWNT/PAN composite film-based supercapacitors. Carbon 2003, 41 (12), 2440-2442
 

http://kumar.mse.gatech.edu/sites/default/files/image045.jpg

Specific capacitance as a function of discharging voltage for SWNT/activated carbon and SWNT/ bucky paper at different constant discharging currents
Liu, T.; Sreekumar, T. V.; Kumar, S.; Hauge, R. H.; Smalley, R. E., SWNT/PAN composite film-based supercapacitors. Carbon 2003, 41 (12), 2440-2442
 

http://kumar.mse.gatech.edu/sites/default/files/image046.jpg

Scanning electron micrograph of PET/CNF (PET/PR-24-HT) composite
Ma, H. M.; Zeng, J. J.; Realff, M. L.; Kumar, S.; Schiraldi, D. A., Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Composites Science and Technology 2003, 63 (11), 1617-1628
 

http://kumar.mse.gatech.edu/sites/default/files/image047.png

Stress-strain curves for PVA, PVA/PVP/SDS, and PVA/PVP/SDS/SWNT films.  SWNT content is 5 wt % of the PVA/PVP/SDS/SWNT film
Zhang, X. F.; Liu, T.; Sreekumar, T. V.; Kumar, S.; Moore, V. C.; Hauge, R. H.; Smalley, R. E., Poly(vinyl alcohol)/SWNT composite film. Nano Letters 2003, 3 (9), 1285-1288
 

http://kumar.mse.gatech.edu/sites/default/files/image048.png

Raman D* band peak position as a function of strain for PVA/PVP/SDS/SWNT composite films containing 5 wt % SWNT. 
Zhang, X. F.; Liu, T.; Sreekumar, T. V.; Kumar, S.; Moore, V. C.; Hauge, R. H.; Smalley, R. E., Poly(vinyl alcohol)/SWNT composite film. Nano Letters 2003, 3 (9), 1285-1288
 

http://kumar.mse.gatech.edu/sites/default/files/image049.jpg

Scanning electron micrograph of SWNT film
Sreekumar, T. V.; Liu, T.; Kumar, S.; Ericson, L. M.; Hauge, R. H.; Smalley, R. E., Single-wall carbon nanotube films. Chemistry of Materials 2003, 15 (1), 175-178
 

http://kumar.mse.gatech.edu/sites/default/files/image050.jpg

 
Effect of SWNT rope orientation on the modulus of SWNT fiber
Liu, T.; Kumar, S., Effect of orientation on the modulus of SWNT films and fibers. Nano Letters 2003, 3 (5), 647-650.
 

http://kumar.mse.gatech.edu/sites/default/files/image051.jpg

Structure of (top) PBO and (bottom) SWNT
 
Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang, X. F.; Vaia, R. A.; Park, C.; Adams, W. W.; Hauge, R. H.; Smalley, R. E.; Ramesh, S.; Willis, P. A., Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 2002, 35 (24), 9039-9043
 

http://kumar.mse.gatech.edu/sites/default/files/image052.jpg

Scanning electron micrograph of fibers from PP/nano carbon fiber composite
 
Kumar, S.; Doshi, H.; Srinivasarao, M.; Park, J. O.; Schiraldi, D. A., Fibers from polypropylene/nano carbon fiber composites. Polymer 2002, 43 (5), 1701-1703